
© 2014 Microsoft Corporation. All rights reserved.

Controller

Invoke Action

A

B

E

C D

Key

Built-in Class

Extensibility Point

Note

Request

Response

E

A

B

OnActionExecuting OnActionExecuted

Email: MSPoster@microsoft.com

C D

ASP.NET WEB API 2: HTTP MESSAGE LIFECYLE

HTTP Request

IIS Hosting OWIN
Self-Hosting

HTTP Response
The HTTP request message is first
converted to an HttpRequestMessage
object, which provides strongly typed
access to the HTTP message.

You can host Web API inside IIS or
inside your own process (self-hosting).

HttpServer

ASP.NET Web API is a framework that makes it easy to build HTTP
services that reach a broad range of clients, including browsers and
mobile devices. It is an ideal platform for building RESTful
applications on the .NET Framework.
This poster shows how an HTTP request flows through the Web API
pipeline, and how the HTTP response flows back. The diagram also
shows extensibility points, where you can add custom code or even
replace the default behavior entirely. You can find documentation
and tutorials for ASP.NET Web API at http://www.asp.net/web-api.

HttpRequestMessage HttpResponseMessage

HTTP Message Handlers
HTTP message handlers are the first stage in
the processing pipeline. They process HTTP
request messages on the way in, and HTTP
response messages on the way out.
To create a custom message handler, derive
from the DelegatingHandler class. You can
add multiple message handlers.
Message handlers can be global or assigned
to a specific route. A per-route message
handler is invoked only when the request
matches that route. Per-route message
handlers are configured in the routing table.

Per-route
Message Handlers

DelegatingHandler

HttpRoutingDispatcher

HttpControllerDispatcher

Route.Handler

DelegatingHandler

HttpMessageHandler

Route.Handler
is null?

Create API
controller

This message handler can invoke
HttpControllerDispatcher and return to the
“main” path, or provide a custom end point.

A message handler can create the response
directly, skipping the rest of the pipeline.

A message handler can create
the response directly, skipping
the rest of the pipeline.

No

Yes

Create Controller
Create an API controller based on the request.

1. Select controller type

HttpControllerDispatcher

SelectController HttpControllerDescriptor

IHttpControllerSelector

IAssembliesResolver

GetControllerTypes ICollection<Type>

IHttpControllerTypeResolver

GetAssemblies ICollection<Assembly>

HttpControllerDispatcher

Create IHttpController

IHttpControllerActivator

2. Activate controller

ApiController

SelectAction HttpActionDescriptor

IHttpActionSelector

Select Controller Action
Select an action based on the request.

ApiController

InvokeActionAsync Task<HttpResponseMessage>

IHttpActionInvoker

Invoke Controller Action
Invoke controller action, using HttpActionContext
for bindings and model state.

HttpRequestMessage

Select controller
action

Authorization
Filters

Exception
Filters

Authentication Filters

Action Filters

Model Binding Result Conversion

Error response

AuthenticateAsync ChallengeAsync

If the request is not authorized, an
authorization filter can create an error
response and skip the rest of the pipeline.

Action filters are invoked
twice, before and after the
controller action.

Unhandled exceptions are
routed to exception filters.Exception!

Controller Action

Model Binding
Model binding uses the request to
create values for the parameters of the
action. These values are passed to the
action when the action is invoked.

URI
Headers

Entity-body

Request message

A media-type formatter
reads the message body
(if any).

The default model binders
read from the URI path
and query string.

A custom parameter
binding can read any part
of the HTTP request.

FormatterParameterBinding ModelBinderParameterBinding HttpParameterBinding

Media Type Formatter IModelBinder IValueProvider

Complex Type Simple Type Any Type

Result Conversion HttpResponseMessageThe return value from the
action is converted to an
HttpResponseMessage.

If return type is
HttpResponseMessage,
pass through.

If return type is void,
create response with
status 204 (No Content).

If return type is
IHttpActionResult,
call ExecuteAync
to create an
HttpResponseMessage

For all other return
types, a media-type
formatter serializes the
value and writes it to the
message body.

Media Type Formatter

IContentNegotiator

HttpResponseMessage void Other typesIHttpActionResult

Action parameters Action return value

The controller is where you define the main logic
for handling an HTTP request. Your controller
derives from the ApiController class.

